
Provisional Patent Application

Management and Monitoring System for Distributed Computer Networks

Field of Invention

The present invention generally relates to distributed computer networks and, in particular, systems and methods for monitoring and managing heterogeneous distributed computer networks.

Background of the Invention

The reliability and performance of distributed computer networks are increasingly important to both commercial and non-commercial institutions. Many modern companies are simply unable to function if their network is not operational. Yet, distributed computer networks remain remarkably fragile: susceptible to either degradation of performance, incompatibility of systems and processes, and outright failure.

One of the most important contributors to the stability and efficiency of a distributed computer network is effective monitoring and maintenance. Today, monitoring and maintenance requires high levels of human intervention. Networks, however, are becoming increasingly heterogeneous. A single network typically links hardware of different types and purposes: desktop computers, printers, servers, etc. In addition, as a network grows or ages, even hardware of the same basic type becomes mixed. A failing desktop computer, for example, might be replaced with a newer computer of different characteristics. Over a relatively short period of time, the network incorporates a significant number of different types of computers. The software operating on various points in the network can also become very disparate, as different products or different upgrades of the same products are installed to meet different users' needs.

Configuring, monitoring and maintaining a distributed computer network becomes ever more difficult as the complexity and heterogeneity of the network increases. The cost of having trained information technology specialists perform these tasks by hand, device by device, has become significant. Moreover, as the complexity of the networks increases, so do the complexity of the tasks the IT personnel must perform and, unavoidably, human error becomes more common. Compounding these difficulties is the fact that the demand for adequately trained personnel appears likely to outstrip the supply of such individuals for some time.

For all these reasons, there has long been a need for automated tools that would assist the administrators of distributed computer networks. There have been several efforts to address this need. Systems have been developed to provide the network administrator with better maps of the network topology, i.e., the location and type of each device connected to the network and the manner in which devices on the network are interconnected. Such a system is described in U.S. Patent No. 5,948,055 to Pulsipher et al., assigned to Hewlett-Packard Company. In this system, collection stations at various points around a network collect topology data regarding the devices or nodes of the network in their vicinity and then share that data with one or more aggregating management stations. Such systems, however, merely provide the network administrator with a map of the network. They do not permit the administrator to monitor the operation of, or exert any management function over, the network nodes.

Other systems seek to acquire more complete information and to use this information to monitor certain classes of devices, software programs or other "resources" on a network. Such a system is described in U.S. Patent No. 5,978,594 to Bonnell et al. and assigned to BMC Software, Inc. Systems such as described in the Bonnell patent employ agent software loaded onto the network devices to provide information regarding that device to the network manager system and may, in certain circumstances be able to cause the execution by the device of rudimentary tasks, such as reboot, specified by the system administrator. Systems such as Bonnell, however, are highly limited in that they lack any sophisticated understanding of the actors on the network, which in turn, has significant ramifications for scalability, efficiency and effectiveness.

None of the proposed solutions to the problem of configuring, monitoring, and maintaining distributed computer networks fully addresses the critical concern: how to free the system administrator from the time consuming and error-prone tasks of configuring and maintaining the myriad of actors on a contemporary, heterogeneous distributed computing network.

Summary of the Invention

The invention is a method and apparatus for the automation of large portions of the configuration, management, and maintenance of distributed computer networks that previously could only be done manually. It includes at least one network appliance, referred to as the "Management and Monitoring Processor" ("MMP"), plus a software agent resident on or associated with each network device. Each actor that is visible over the network is identified as a separate object, in which the characteristics of the actor are mapped, through a novel class oriented object model, to that object. Actor, in this context, is very broad and inclusive and includes, at a minimum, hardware, software, processes, and representations of the people using the network. Typically, the agent communicates the object to the MMP where it is stored in a database. Through a user interface to the MMP, system administrators can determine the configuration and monitor the performance of both the network and its constituent actors, implement an almost unlimited number of actions, such as transfer files or data to an actor, direct an actor to run specific programs, scripts, or files and other actions as described below. Through the MMP the system permits a system administrator to view a distributed computer network as a single virtual infrastructure entity.

The data and software processes supporting a single distributed computer network infrastructure are treated together as an instance of the infrastructure. A single MMP can support multiple instances, each instance representing a different infrastructure. This permits the management of multiple infrastructures from a single access point. Conversely, the same infrastructure can be described in multiple, identical instances, which provide redundancy and fail over capability.

The Preferred Embodiment

The following describes the preferred embodiment of the invention as it is being implemented in the n/Suite infrastructure management system being developed by Teleais International Inc. of Walnut Creek, California.

1.
System Overview

The system, including generic workflow, is shown in Figure 1. The heart of the system is the MMP. The MMP can be resident on a server on the network, remotely located on a server provided by a hosting service, or supported in a variety of other manners. In the simplest topology, however, the MMP will be a separate network appliance connected within the infrastructure being managed. The MMP runs a variety of software modules. The principal modules are: the user interface daemon ("UID"); the data model daemon ("DMD"); the work daemon ("WORKD"); the message manager daemon ("MMD"); and the event daemon ("EVENTD"). In addition, the MMP contains a stored object structure called the Object Database for information concerning the network and may, in some implementations, include a storage structure referred to as the event warehouse for the storage of certain information other than static objects.

Devices on the network are divided into two categories: devices that include a general purpose, programmable computer, and non-programmable devices, such as printers with closed firmware. The MMP downloads software called the agent to each device on the network that includes a general purpose, programmable computer and that can accept and execute the agent software. For those devices to which the agent cannot be downloaded, the MMP creates a proxy agent, either on the MMP or on a cooperating general purpose programmable computer. Each agent contains multiple modules, including a change monitoring module ("CHMOND") and a control module ("CTLD").

In the simplest configuration, the agents communicate with the MMP using the infrastructure being managed. In some situations, however, for example where there are capacity constraints or security concerns, the agents and the MMP may communicate using a separate physical network from the infrastructure being managed, or over a private network sharing some of the same physical infrastructure.

2.
The Object Model

The management of a complex, heterogeneous network involves the transmission and storage of considerable data. An important part of the invention, therefore, is an efficient structure for this data. In the preferred embodiment, that structure is an object model although other approaches, such as a relational model could also be used. The underlying data may be stored in any underlying format that supports the data structure, for example an object model could be stored in a relational database. Object model databases are widely known and are currently offered by such suppliers as “Objectivity”, “PostgreSql”, and “Portal”, to name a few.

Agents collect information regarding each actor in the devices on which they are resident or for which they are the proxy. There is not necessarily a one to one correspondence between a device and an actor. A single desktop computer, for example, may contain several actors, such as a network interface controller, a printer controller, fax board, etc. The system can regard each of these actors as a separate object.

For each actor, the agent creates an object from an object model that represents a comprehensive method to classify and organize actors and their characteristics and map them into an extensible class-oriented structure. For example, an agent might create an object for a network interface controller ("NIC"). The class is defined as "interface." This in turn means that the object has defined characteristics such as the interface connection, the network type, and a device name. Hypothetically, then, an object is created for this device such as "class=interface; connection=rj45; type=ethernet; name=r10".

This object is then transmitted to the DMD on the MMP, where the DMD causes it to be stored in the object database. Objects stored in the object database are the only persistent data stored by the system. Access to objects is only through the DMD. All operations on objects must be performed within the constraints of a security model enforced by the DMD.

The object model of the preferred embodiment differs significantly from the manner in which prior art systems have characterized network actors. Previous systems have attempted to create a fixed set of limited classes and then fit machines located at different nodes of the network into one or the other of those classes. The system of the current invention, however, permits a variable level of granularity, from only recognizing different actors at the most coarse level of major machines, for example individual desktop computers, down to recognizing the smallest component or process that is separately visible over the network, such as each separate process or each separate partition on a disk. It is entirely the system administrator's decision what degree of granularity is most useful.

It might be expected that the high degree of granularity, i.e., the ability to identify and separately model virtually every constituent part of a network would create a surfeit of unique data records and an inefficient, overlarge system. In fact, perhaps counterintuitively, the inventors have found the exact opposite to be true. The inventors have discovered that, at least insofar as the characteristics relevant to a distributed computer network infrastructure administrator are concerned, the constituent members of even the most complex infrastructures can be grouped together into remarkably few separate classes, each member of the class having the same relevant attributes and a limited number of valid parameters those attributes can hold. Indeed, the complexity builds not when one examines the network at increasingly smaller components and sub-components, but when one tries to find commonality and generalizations in machines comprised of many different combinations of components as has been the approach taken previously.

Moreover, classes can efficiently be arranged in a hierarchical fashion. A particular class is associated with a particular collection of characteristics that together define the class. Other classes may also share those exact same attributes, plus others. As shown in Figure 2, the class hierarchy represents inheritance or specialization/generalization relationships.

Classes define objects that have common structure and common behavior. These classes can be combined (based on class hierarchy) to create objects combining the characteristics of a number of classes. For example referring to Figure 2, Organizations is a sub-class of Group, and Group is a sub-class of Common. Each sub-class inherits the characteristics from the more generalized [super-]class. Thus, the Organization class inherits the characteristics of Group which, in turn has inherited the characteristics of Common. These characteristics are referred to as attributes.

While it is preferable to operate the system with the smallest number of classes possible, it will sometimes arise that a particular actor on the network does not map onto any existing class. In such circumstances, either an existing class definition may be modified or a new class may be defined.

Objects can be viewed as containers for sets of attributes. Attributes provide a method of naming and organizing data within a class of object. Attributes are stored as part of the object and may be values or procedures. If the attribute is a 'value', the data is stored within the object. If the attribute is a 'procedure', the stored data may be the actual procedure code for an object method, or may be a reference (using for example a Universal Resource Identifier) to the location of the larger procedure stored externally to the object (for example, in an interface library).

When a client application, such as the agent or a software process on the MMP, creates an object, a client interface library function will create a local copy of the object and create/assign only those attributes added by the object initialization routines. The attribute fields do not exist as part of the object unless they are explicitly created when the object is initialized. The values of some attributes can either be supplied by default or are automatically created and/or maintained by the system.

The Attribute class also contains a "valuesAllowed" attribute. This attribute is intended to allow the definition of constraints on attributes. For example, this attribute may be used to constrain a value to be a reference to objects of a certain class type. The valuesAllowed definition is a list of elements consisting of a method and a list of parameters to that method. During commit, the methods in this list will be executed in sequence, passing the attribute value as a first parameter, and return true if the attribute value satisfies the constraint.

The Attributes, generally, are maintained as a class of objects "Attributes." The Attributes class contains a "sortSequence" attribute. The sortSequence attribute consists of a list of elements consisting of the name of the attribute on which to sort, and the sort sequence (ascending or descending). The attributes being sorted are in the contained class.

Access to the object database is controlled. Although several different approaches can be used for access control, the preferred embodiment relies upon credentials and Access Control Lists (ACLs). ACLs control the access to an object and the object's individual attributes by assigning different roles to different users on the lists.

When a user, on behalf of a network actor, establishes a “connection” to the DMD, the user must authenticate with a credential for the actor, and the DMD will authorize the connection according to the permissions available to the actor. In this context, “user” refers to a computer process that, in the course of its operation, requires data from or wishes to provide data to the network, rather than a human being. The “connection” will be associated with one or more established Roles for the actor, each Role representing a group of permissions for the actor. Each attribute within an object has associated with it an access control list (ACL) which establishes the policy that must be applied by the DMD to verify permissions of an actor for operating on (using, seeing, changing, deleting) an attribute or its value. Each object has an ACL which is used similarly.

All objects in the object database must be uniquely identified. While virtually any unique identifier system will serve, the preferred embodiment operates with the standard Object Identifier Descriptor ("OID"). This nomenclature is familiar to those of skill in the computer network arena and is described at various places, including the Network Working Group "Request for Comment ('RFC') 1778" and "RFC 2252", publicly available on the Internet at URL http://www.faqs.org/rfcs/. A summary of the OID nomenclature may be found on the Internet at URL http://www.alvestrand.no/objectid/. In the preferred embodiment, OID's follow the format: <Object_Model_Prefix>.<Object_Model_Version>.<DMDPrefix>.0.<Object_Num>.0.<versionNum>

This format in the OID system is particularly useful in the current invention because of its ability to support globally unique object identifiers in a distributed system that are capable of infinite extension. While most implementations of OID nomenclature use a fixed number of fields, separated by “.”, this nomenclature does not. Instead, it relies upon a distinguished separator to separate the DMD identifier data from the object number and to separate the object number from the version number. While the distinguished separator (in this example, “.0.”) cannot be used in the fields without ambiguity, and thus should never be used in this fashion, this is a small price to pay for the greatly increased flexibility and extensibility that results from being able to add multiple dotted integer values (i.e., numbers separated by “.”) within a single field.

Each DMD will be assigned a unique <DMD prefix>. The DMD may then grant an OID name space to each entity having naming rights. These can include virtually any of the various software daemons although, as a practical matter, networks actors are generally represented by objects created by the local agent, which controls the naming rights. The object for that actor will thus be assigned a name that is an extension (i.e., a name within the name space) of that agent. Alternatively, as the system administrator chooses, the DMD may perform all the naming tasks, sequentially assigning object identifiers to all objects created in the system.

The global DMD namespace is organized as a hierarchy. When created, a DMD must obtain a valid namespace (OID-zone) from the creating authority. The namespaces issued by such a creating authority form a structure that can provide globally unique paths, similar to HTTP URLs or Domain Name Spaces, DNS.

4.
The Monitoring and Management Processor (MMP)

The Management and Monitoring Processor can be a virtual machine operating on a general purpose computer or even just an available or designated portion of the resources of a general purpose computer. In the implementation of the preferred embodiment, however, the MMP is a network appliance built around a Intel PENTIUM® microprocessor, and includes non-volatile storage, peripheral storage, a CD Rom drive, serial ports, and a modem. In the preferred embodiment, the processor operating system is FreeBSD, although other operating systems such as Linux, Solaris, and Windows NT could also be used. The software operating on the MMP includes as principal components, the data model daemon, the message manager daemon, the event daemon, the work flow daemon, and the user interface daemon,.

a.
The Object Model Daemon and the Object Database

The data model daemon (DMD) creates and controls the object database as well as access to objects within that database. In effect, the object database and the DMD together function as a server; the other components of the MMP and the agent daemons relate to that server as clients, through utilities offered by the DMD client interface library, typically found on every programmable device being managed in the infrastructure. The DMD enforces the syntax of the object model, provides access to the object database, assigns names to objects using the OID nomenclature described above, and provides a set of operations on objects in the object database within the constraints of the security model. In this way, the system creates a single, authoritative record of the state of the network, i.e., the object database.

b.
The Message Manager Daemon

As its name implies, the message manager daemon ("MMD") collects several types of messages and redistributes them to interested parties. It acts as a message queuing system, and a channel-based publish/subscribe engine. The messages it receives may be informational logging, urgent error events, requests for actions, responses to requests, or of any other nature. It provides some fine-grained control of message filtering, and has some intelligence for aggregating simmilar messages into summaries.

A critical funtion of the MMD is ensuring that all necessary parties receive notice of particular events or particular information in a manner that is reliable and efficient in its use of network resources. Infrastructure management faces an inherent tension in accomplishing these two goals. The most simple way of distributing information to the many disparate parts of a network is to send the information to all parts of the networks. Then all network actors receive the information and can use it or not as they need. This approach, although highly reliable, results in a high degree of network capacity lost to the overhead of the management function and is, thereby, inherently inefficient.

Past solutions to this problem have relied upon the fact that specific types of information are only required by specific recipients. The actors generating the information, typically an agent at a node, operate with a policy as to which type of information must be directed to which recipient. Network traffic is thereby much reduced while all the necessary information is shared.

This approach too is unsatisfactory, however. In order to administer the policies that determine where information is to be sent, the agent must be able to store the policies locally and perform the computations necessary to determine the recipient. The agent thus borrows both data storage and computing capacity from the host on which it resides. In large, complex networks, the agent inevitably becomes a non-trivial drain on the resources of its host. In essence, efficiency in network traffic has been purchased at the cost of inefficiency at each processor on the network.

This approach has a second disadvantage too. Information distribution policies are typically set and controlled by a system administrator. Occasionally, it becomes necessary for the system administrator to modify a policy, sometimes only for a brief interval. For example, during the installation of new software, the system administrator might wish to control certain network management functions manually and require that information from the agents relevant to those functions be directed immediately to the user interface. If the policy is resident at and administered by the agents, then it must be modified at each agent individually. This process becomes very cumbersome and time consuming.

In the preferred embodiment, however, the goals of network efficiency, reliability of information distribution, and convenience of use are all solved using the publisher/channel model at the message manager daemon. In the publisher/channel model of information distribution, information is categorized according to the channel or channels to which it is relevant. Parties interested in receiving information subscribe to a channel with an appropriate communication to the publisher. As applied to the preferred embodiment, agents (and sometimes other software modules) send messages to the MMD. The MMD applies a policy to the message to determine which channel it should be routed to. It then sends the information to those other actors on the network that have subscribed to that channel. Assuming that actors subscribe to the correct channels, messages will reliably be routed to the right recipients without excess network traffic. Moreover, the system adminstrator can readily revise the policies regarding information distribution simply by modifying the policies resident on the MMD.

The MMD provides additional benefits too. It permits messages to be queued so that subscribers who are unavailable can later receive the messages they missed. The MMD can operate as a gateway, listening on a channel for messages that it publishes to a new channel. Finally, the MMD permits enhanced multiplexing. Through filtering, events being received may be aggregated together for brevity before being delivered to the destination. For example, a process within the system may require updated information only periodically to avoid information overload. As a further example, the UID may want to receive a digest of events every 10 seconds, but high-priority messages right away.

Several message types are handled by the message manager. They include debug messages -- used for debugging; informational messages -- general information; warnings events -- information about possible problems; alert events -- alert about an existing problem; error events -- serious failure; data sets -- data produced by monitoring; command request -- a request to an agent to do something ; and response reply -- a response from an agent about a command request

c.
The Event Daemon And The Event Warehouse

Some of the messages the message manager daemon receives identify particular events that an agent has noted as relevant to an object. The MMD publishes these messages to the event channel or channels, where it will be received by the event daemon ("EVENTD"). The event daemon determines the appropriate response to each event and passes that event on to the appropriate process. Often, that means that the event daemon is passing the event to the work daemon in order that the work daemon may commence some responsive process.

Event messages can be treated as objects like any other object within the Object Model. Storing the event messages as an object in the object database, however, may not always be optimum, however. As a result, in the preferred embodiment, the event daemon also operates an event warehouse, where event messages are stored and can be retrieved without reference to the DMD.

d.
The Work Daemon

As shown in Figure 1, the role of the work daemon ("WORKD") is to respond to messages of an event, determine an appropriate response to that event and process that response. In the example shown in Figure 1, a client system on a network is booted up for the first time. This might be because the client has only just been attached to the network or it might be because the agent on that client was only just installed. In any event, as a result of this booting up, the agent sends a "new system" to the message manager daemon. This message is recognized as an event and sent to the event daemon. The event daemon identifies the event as one that requires a response and sends it to the work daemon to execute. The work daemon requests a new system OID for this client from the DMD. The WORKD the sends this new OID to the agent.
e.
The User Interface Daemon

In the preferred embodiment, the user interface for the system of the invention is implemented by a software application on the MMP called UID. The role of the UID application is to provide access to services offered by the MMP to users (or systems) who have a web browser and the appropriate interface software.
Initially, the UID will handle 2 types of user inputs: Web based using a browser, and text based using an interface application.
The UID receives user requests and generates appropriate responses and returns them to the user. The response depends on the interaction mode, for example, a text string for a request from a terminal or a web page for a request from a browser.
Although it is possible to create separate user interface daemons for different interaction modes, such as a command line interface daemon and a web user interface daemon, since much of the processing of user requests is shared between interaction modes, in the preferred embodiment everything is kept in one user interface daemon. The user interface daemon itself should adopt an architecture that separates the general interaction logic from the input and output aspects that are dependent on the interaction mode.

All user interaction should go through the UID application using a secure data transport protocol, such as SSL. TUID also communicates with two main components of the MMP, the WORKD and the DMD. TUID communicates with these components using remote procedure calls over a secure data transport. A common example of such system is XML RPC over SSL sockets. It is not generally the role of the UID to communicate with any other part of the MMP or agent software, although client processes may open a direct channel to the UID to return real-time monitoring data.
TUID interacts with the WORKD to execute workflows. TUID interacts with the DMD to gather information on objects, to create new objects and to record changes to objects. The DMD is also used to store UID specific data such as user preferences and UI elements such as logos and menu options. For performance reasons these are also cached on the UID.
TUID is a multi-tiered application. A tier encapsulates a specific kind of functionality. Each tier is assigned a unique responsibility in the system, is logically separated from other tiers, and is loosely coupled with the adjacent tier.

TUID tiers are described in the following table:

	Tier
	Description

	Client Tier
	
This layer represents the input devices to the application. In the preferred embodiment, this includes command line interface input through a command line client application and web interface input devices (web browsers). The application is built around an input neutral architecture that is able to handle multiple presentation devices or applications types such as applets, GUI and WAP devices, should these input methods be desired. The preferred embodiment also supports a programmable API which receives and processes requests into the UID.

	Presentation Tier
	This layer is Client Tier aware meaning that it’s responsibility is to transform input parameters from the client tier to API requests to the Business Tier below. It consists of these modules:

Master Controller: This module is responsible for intercepting all requests to the system and making sure that application level security is enforced throughout the system using the Security Manager. It also redirects the calls to the corresponding Request Handler using the Request Manager. In the preferred embodiment this is a servlet.

Security Manager: Handles UI security requirements such as user authentication. Once UID performs authentication and obtains the Security Context of an authenticated principal (user), the Security Context is maintained in the session and holds user preferences such as color schemes, home page preference, and current time zone.

Session Manager: Handles managing user sessions in a session-full request such as a web request. This module holds the Security Context of the user during the interaction session with the system.

Resource Manager: Handles the resource level mapping security. JSPs, Servlets and HTML pages are set up as protected resources using configuration data the module loads at startup.
Basically this module uses a map of all protected url (resource) in the system in order to determine if a resource is protected or not. When a user requests a resource the Resource Manager has the information if the resource needs authentication or not.

Request Manager: Has a map of resources and request handlers. Request handlers are classes that handle client requests. Their main goal is to translate web/CLI requests to a method call to the UID Business Façade. It is highly recommended to make only one unique call to the business façade in any request handler. This enforces the separation of responsibility since it is not the responsibility of the request handler to understand the business rules of handling a request. The request handler could have for example a screen that displays two distinct objects in this case it is possible for the request handler to make two requests to the Business Façade.

Content format and delivery: Handles formatting of the results and errors returned to the user. This is typically done using templates that render the results returned by the request handler into a presentation language such as HTML, Text, XML or WML.

	Business Tier
	This layer is responsible for satisfying requests. It interacts with objects and the DMD to store, retrieve and remove objects. This layer changes the status of the DMD database directly. It also is responsible for interacting with the WORKD to perform workflow operations.
The principal module in this layer is:

Business Façade: Handles client requests from Request Handlers. Its intent is to hide the details of interacting with objects and rules from the presentation tier. It is materialized in a set of methods that are called by the business tier to perform actions on the system. The methods could call each other. Again, it is recommended that each composite action is wrapped in a one unique Business Façade method call. For example if removing a user from the system involves (i) detaching it from all its roles and (ii) then deleting the object, then there should be a method UserRemoveAndDetach() that the request handler calls. UserRemoveAndDetach() makes a call to UserRemove() and UserDetach().

	Persistence Tier
	This module is related to the objects of the system. It is the module that handles storage and retrieval of objects from the object database. It is implemented a Java package that mimics DMD and WORKD modules, using remote procedure calls over a secure data transport to communicate with the DMD and WORKD processes.

	Data Tier
	This is implemented by the DMD and WORKD. The DMD and WORKD expose a set of methods using a remote procedure call interface that their respective clients use to communicate. The communication with the two servers operates over a secure data transport.

The following describes the interaction of the UID modules in two typical scenarios.

GET Object Scenario: This scenario describes the interaction of a user requesting to view information about an object in the system. The object is identified by its OID, a universally unique identifier of objects in the system (and across systems).
	User/Client Device
	I would like to view the attributes for object OID x.y.z. ACTION=getObject

	Master Controller
	Security Manager, does this user have permission to do this action on this system?

	Security Manager
	Let me check… Resource Manager, is this resource protected?

	Resource Manager
	Yes it is.

	Security Manager
	OK. This user is requesting a protected resource but did he/she log in already? Does user have a session established with the Session Manager?

	Session Manager
	Yes he/she logged in already.

	Security Manager
	OK. Master Controller, the user has the right to perform action.

	Master Controller
	OK. Request Manager.handleRequest() for this action.

	Request Manager
	OK. Here it is “RequestHandler.getObject(httpRequest request)”

	Master Controller
	OK. Call method “getObject()” on object “RequestHandler” and pass the request object to it.

	Request Handler
	1- Extract object “oid” from request. The request could be from different sources: Web, CLI, XML…

2- Call method on the Business Façade with the corresponding parameters.

	Business Façade
	Call method pullobject(oid) on the DmdClient.

	DmdClient
	Returns Object “Obj” with all its attributes.

	Business Façade
	OK

	Request Handler
	OK. Return “obj”

	Request Manager
	OK. Get the template to use given the ACTION and the client device.

request.setAttribute(“t_results”, obj)

Response.forward(template).

	Template (JSP)
	Render data in request.getAttribute(“t_results”).

LOGIN SCENARIO: This scenario describes a login interaction between the user and the system. It uses a basic authentication mechanism with a form to handle the operation. The user is presented with an HTML form that has two fields, one for the user name and another for a password. The scenario starts when the user submits the login form.

The login action is really a request for the home page of the system, or of the user’s homepage (with personalization), not explicitly to “login”. The ACTION would in this case be “home”. This means that the system is able to deliver any screen as long as the request has the two fields “t_username” and “t_password”. This will allow single requests from the CLI to be executed the same way as Web requests.

	User/Client Device
	I would like to see the home page and my user name is “tusername” and my password is “tpassword”. ACTION=home

	Master Controller
	Security Manager, Is this user allowed to do this action on this system?

	Security Manager
	Let me check… Resource Manager, is this resource protected?

	Resource Manager
	Yes it is.

	Security Manager
	OK. This user is requesting a protected resource but does he have user credentials (t_username and t_password) ?

	Security Manager
	Yes, user has “t_username” and “t_password”.

	Security Manager
	OK. Login user and.

	Master Controller
	OK. Request Manager.handleRequest() for this action.

	
	Same scenario as getObject at this point.

5.
The Agent

The purpose of the Agent is to control actors on the network from the MMP(s). Toward that end it provides control, management, and monitoring functions. This is accomplished by the Agent pulling or receiving files from the MMP, and controlling the running of software at the actors. Most functionality is based on these fundamental services.

The Agent runs on a client machine or device as a collection of daemons, standalone programs, support libraries, and a repository of data (mostly ephemeral). The Agent is not one program but actually a collection of the following programs, including but not limited to:

INSTALL: a standalone basic operating layer run on the hardware as necessary to assist in OS installation. Includes partitioning drives, and establishing some filesystems. Installs BOOT.

BOOT: a boot agent that installs CTLD initially. It requires that an OS already be in place or, in the alternative, the presence of INSTALL.

CTLD: the control daemon. It runs programs and controls Agent configuration. It provides essential primary Agent functions such as securely connecting the DMD, uploading and downloading files, etc. Manages all the parts of the Agent.

SWM: Software Package Manager, handles installation of complex packages and dependencies. Includes intelligence for handling software distributions, especially obtaining gold copies, and customizing packages from templates.

EVMOND: the event monitor daemon, it monitors system variables of many kinds, provides data and system state analysis, and tracks baseline data for processing triggered alerts. In contrast to the CHMOND, it monitors ephemeral data which does not persist across reboots.

CHMOND: the change monitor daemon, it monitors file systems, tracks sets of files and directories, and fingerprints of those sets periodically, on demand, and in real-time. In contrast to the event monitor, it monitors persistent data which may change on a system, such as config file settings and registry entries. It also monitors data which is stored hierarchically, like filesystem directories, by walking through a logical tree, such as LDAP and SNMP.

UTILITIES: in addition, there are a variety of utility functions for such operations as scanning a system and preparing and forwarding event reports.

The interaction of these various software components is shown in Figure 3, Agent Parts.

Where there is no general purpose computer associated with the actor on which the Agent can run, the Agent runs as a proxy within the MMP. A proxy Agent has the same constituent parts as a regular agent, however, in order that it be able to learn about and communicate with the actor to which it is associated, it typically requires a driver to translate generic Agent instructions into the language and syntax specifically required by the actor.

6.
Creating, Storing, Retrieving and Modifying Objects

In the preferred embodiment, objects are the only form of persistent storage. Objects can be created by any application, such as an Agent daemon, the WORKD module, etc., or by using the DMD client interface library create function.

For example, the following (low level) function will create a new object of the specified type:
 obj = DMD.Ensuite(server, "class-type")

Where,
 server –object in the object database
 class–type – the class of the object to be created
 obj – local copy of the new object (eg Organization)

If the server and class-type are valid, the DMD server will allocate a unique OID for the new object and return this value to the client application. The DMD server does not create a persistent copy of the object at this time, only a reference is saved for the OID/type pair. A persistent copy of the object is created in the object database by the DMD when the commit function is called.

When the create function succeeds, the DMD client interface library function creates a local copy of the object type and creates/assigns only attributes specifically required by the object model.

To then save the object and its contents, the client application must call the 'commit' function.

When an object is created, the client application can assign values to attributes. In the preferred embodiment, all attributes are pre-defined as part of the Object Model schema (clients of the DMD cannot arbitrarily create and use private attributes).

There are two sets of attributes:

1. 'Common' attributes are generally used for management of the object database and cannot be modified by the client applications.

2. 'User' attributes are for use by the client applications.

The DMD will enforce the object model syntax whenever the client application modifies an attribute.

Some objects have methods, generally for the convenience of organizing object storage and retrieval within the DMD. Objects may have internal 'methods' associated with one or more attributes. There are two types of methods available for the DMD interface library: regular procedures and deferred procedures.

Regular procedures do not change the attribute values for the object. For example, a regular procedure may require reading the string attribute or issuing a query to determine if this object is a member of the specified group.

When performing a deferred procedure, only the local copy of the object is immediately changed. The operations performed are recorded in a journal for that object, and will be performed (again) on the DMD server when the commit function is called. For example, modifying an attribute that is a string value, or adding an object to a group.

When an object is created, the local (server-side) copy of the object will have only updated values for some of the _Common* (private) attributes. Specifically, this includes _commonOID and _commonType. By default, the public attributes are not sent to the client. However, any reference to a public attribute will initiate a (hidden) client call to the DMD server and retrieve all public attributes for that object.

Explicit use of the pull function is not required during normal operation of the client. The pull function can be used to refresh all attributes to the last committed values, discarding the current values in the local object, or to load only a specific set of attributes (i.e., for performance).

If an attribute is flagged as Read-Only, any new values for this attribute will be ignored by the DMD server when the commit function is called.

Procedures

Some attributes must be modified using procedures (algorithms). These attributes can not have values assigned directly or have values read directly from them. These functions must be accessed using Workflow.

Note: Attributes marked INTERNAL in the 'Common' class are reserved for use only by the DMD server) and cannot be accessed using the client interface library.

When objects are created or retrieved, the client application is working with a cached copy of the object, and this version of the object is not guaranteed to be synchronized with the object database. To synchronize the local cached object to the object database, the client application must use the DMD interface library 'commit' operation.

For example, to save changes to the server DMD:
 obj.commit()

The DMD only creates and stores an attribute if that attribute has an assigned value. The client application may be required to test for the existence of an attribute before using the value.

For example, to test if an attribute exists:

 hasattr(obj, "someattribute")

If the object is only for temporary use and the changes do not need to be saved, the object can safely be deleted without calling commit. The DMD server will not update the object without an explicit, successful, call to the commit method.

The commit operation notifies the DMD of all client changes to the object attributes. Depending on the nature of the attributes changed, the DMD server may be required to repeat some operations to update the DMD server persistent copies of the attribute values, and the resulting values may be different than the client's cached object.

If attributes are READ ONLY or INTERNAL, then any changes to these attributes will be ignored during the commit operation.

When an object in the DMD is updated (commit), the DMD does not delete/overwrite the older version of the object -- instead, a new version of the object is created. This applies for the following cases:

- the object is added or removed from a group

- any attribute(s) is added, deleted or value is changed

Reading time stamps and the DMD changing INTERNAL attribute values do not, however, automatically cause the object version number to be increased.

Older versions of objects can be examined, but not modified. After an appropriate period of time, older versions of objects are moved to archival storage devices.

Since the DMD server is not a relational database, the only available method for retrieving an object is to specify its OID.

Use the findobject function to retrieve the object using an OID. The findobject function returns only the DMD internal attributes (class Common) and does not return any public attributes.

For example,

obj.findobject(server, OID, exact_OID)

Where,

server object database object

OID OID for requested object

exact_OID Boolean flag to specify version request:
 FALSE = return the latest version of the OID
 TRUE = retrieve exact version referenced by OID (else fail)

If the exact OID of an object is not known, the application may provide a root OID (for example, the Organization object) and traverse the object structure to locate objects with specific attribute values. An object oriented query function may exist to do this conveniently in the DMD.

7.
Operation and Work Flow

a.
Overview

The Agent facilitates monitoring, managing, and controlling machines. In Figure 4 one can see how those functions fit into the system as a whole. A user at a UI station will issue a command to the WorkFlow engine WORKD. Workd manages dispatching the command to the appropriate Agents. Those Agents may reply to the Message Manager (tmsgmgrd) to deliver results.

Alternatively, the software being run by the Agent may generate event messages which are delivered to the Message Manager, which triggers a WORKD to run in response.

Collecting and managing data is the responsibility of the Agent which looks at several types of data. The data is analyzed and may generate events, or be sent to a user who happens to be interested. Often the events are alerts indicating problems, in which case they trigger WORKD which may in turn report to a user, or automatically respond with appropriate actions. Actions are implemented by calling upon Agents to run software, or adjust files on the target actor. See Figure 5.

The Agent is meant to have simple but general functionality. Much of the policy level functioning is pushed to the MMP components.

The Agent keeps limited log files. It maintains enough log data to do the calculations it needs to do. To track older data, it sends files to the MMP to be stored. The Agent is also lightweight so as not to impact the client machine. Agents are everywhere, but MMPs are central. Keeping the Agent light and flexible is important for: (a) portability (b) OS independence (c) hardware independence.

The Agent supports only a limited sense of message filtering. More complex, filtering rules and policies live elsewhere.

Because thousands of Agents may be communicating with an MMP, Agents must be careful not to flood the network with their own event traffic. The Agents, and the protocols, are designed to support limiting communications quickly and easily. The Agent uses only limited amounts of local disk space for its own purposes. If the Agent requires greater data storage, it can push files to the MMP.

The Agent is self sufficient, and able to function even when disconnected for long periods from the DMD. Through a local interface it can provide read-only data standalone regarding the local actors. Like an IP router, the agent only manages itself, and is only aware of its immediately adjacent connections (in this case usually one DMD).

b.
Example Scenarios

These are high-level example uses of the system which are intended to explain the operation of the invention from a user's perspective. They are examples of real day-to-day problems.

1. Bad Machine:

A machine, M10, goes haywire for no known reason. The Agent indicates an exceptional condition on M10 because the I/O statistics show huge amounts of activity. The System Administrator uses the Agent to see what processes are running on M10 that where not running the day before. There's a process called "foot" which is new (according to CHMOND). The SA tells the Agent on M10 to monitor "foot" for 2 minutes and report back (tevmond). In the meantime, the SA finds that "foot" was installed as a superuser at 3:45am (CHMOND), and that the users logged in at that time where U123, U456, and U789 (tevmond).

Upon seeing the execution trace for "foot", the SA realizes that it's a security breach. A user's account was broken into, and someone is running an unauthorized server on the machine. The process is shutdown (CTLD), the user disabled (WORKD), all programs named "foot" and having the same checksum are disabled throughout the whole organization (CTLD). A filter is added to the firewall to prevent connections coming from the malicious networks (tWORKD).

2. Test S/W Installation:

Critical new software needs to be tested before roll-out to all clients. The SA upgrades her own machine, she asks the Agent for information on what files were effected (CHMOND), and she monitors the change to key system variables (tevmond) such as free memory, I/O reads/writes, and network packets out. From this the System Administrator is able to determine that the new software will not have an adverse affect on network performance or reliability.

8.
Multi Infrastructure Architecture and Redundancy

a.
The Instance

Each set of software processes and data structures on an MMP related to a single infrastructure under management, operating in a virtually isolated environment, are called an “instance.” Each instance is a secured environment on an MMP with an assigned IP address. A utility allows the host operating system to trigger actions, such as daemon startup, within an instance.

When a new instance is created, a script running on the MMP will create all of the necessary files and installs the software package to that instance from the MMP. Once the files are ready and the software installed, the instance can be used to supervise a distributed computer network infrastructure. This requires that a module within the instance download the agent software to, or enable proxy agents for, all networked devices to be managed or monitored. The agent software will then begin creating and delivering to the DMD objects for actors in the infrastructure. In a short period of time, the DMD will have populated the object database and the system can support useful work.

b.
The Multi-Instance MMP

The use of the instance as an operating environment for a single infrastructure makes it possible for a single MMP to support multiple instances and thereby, multiple infrastructures. This permits the system administrator to configure MMPs to supporting as many or as few separate infrastructures as is optimum for the circumstances, without concern that a particular configuration will require additional network management hardware. It also permits the remote monitoring of several geographically or administratively separated infrastructures simultaneously from a single location or facility. Not only is this of value to more far flung institutions seeking to centralize IT functions, it also provides a platform for independent suppliers to perform system administration on an Application Service Provider ("ASP") basis for multiple customers.

There are special Agents that run on the MMP, both specific to each instance, and for the whole MMP server. These special agents have different functionality and software as follows.

MMP-agent:

Controls the whole MMP, and therefore has access to all the instances on a single machine. Can upgrade all software and monitors hardware for the whole machine, etc.

instance-agent:

Controls an n/Suite instance. Provides a realm of control for a single organization.

server-agent:

On a network or subnet, a single server often acts as the local proxy for many services such as: DNS, SMTP, DHCP, NIS, Proxy Arp, etc. The Agent running here has special security issues because other machines are trusting it. This server-agent may also run a tmsgmgrd to aggregate network traffic.

c.
Redundant Instances For A Single Infrastructure

Instances also permit various approaches to failover, redundancy and other capabilities. The instance for a particular infrastructure can be mirrored and reside on a different MMP. The mirror instance might be inactive except at specified intervals when the object database is updated from the primary instance database. Should the MMP on which the primary instance resides fail, the mirrored instance is activated, polls agents for updates to bring its object database current and assumes the infrastructure management role. Alternatively, the mirror instance can be operating in a monitor only mode such that, when the primary instance shuts down, the mirror instance can step into the management function instantaneously and seamlessly.

Finally, multiple instances for the same infrastructure permit that network to be monitored simultaneously by different parties for different purposes. For example, a multinational infrastructure may include local area networks in several different countries that are all part of a single wide area network. Management of various aspects of the wide area network may be divided among several geographic facilities. Each facility can manage and monitor the entire infrastructure through the use of its own MMP, in coordination with the MMPs operating in the other geographic facilities.

9.
Access Control Lists (ACLs)

Access to the DMD and the contents of the object database are controlled using credentials and Access Control Lists (ACLs). ACLs control the access to an object and the individual attributes.

Access Control Lists (ACLs) are used to restrict operations on all objects in the object database. Based on the authority level of a user making a 'connection' to the DMD, the following operations will be explicitly allowed or denied: read, write (add new attribute), modify, use, view, link, unlink, and policy.

The ACL provides a central point of management organized by role. Every object creation is under the authority of an actor in a particular role, and that role will provide a default ACL for the object. The default ACL dominates the access control policy for the object. Each ACL is sharable by multiple objects so there is a single place to make changes that will immediately affect all objects created using that ACL.

Additional security is obtained by operating each software process as a separate user with equal but separate privileges within an instance and each instance as having separate but equal privileges within the MMP. As a result, a single daemon can be compromised without affecting the other daemons within an instance and, indeed, an entire instance can be compromised without affecting the security of other instances running on the same MMP.

40152822_1.DOC
Confidential and Proprietary information of Teleias International Inc.

Page 34 of 34

